If it's not what You are looking for type in the equation solver your own equation and let us solve it.
210-60x^2=0
a = -60; b = 0; c = +210;
Δ = b2-4ac
Δ = 02-4·(-60)·210
Δ = 50400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50400}=\sqrt{3600*14}=\sqrt{3600}*\sqrt{14}=60\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{14}}{2*-60}=\frac{0-60\sqrt{14}}{-120} =-\frac{60\sqrt{14}}{-120} =-\frac{\sqrt{14}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{14}}{2*-60}=\frac{0+60\sqrt{14}}{-120} =\frac{60\sqrt{14}}{-120} =\frac{\sqrt{14}}{-2} $
| 11=b/3+9 | | -4v/7=-28 | | d/9+30=37 | | 6x+6=141 | | -4(2n-1)-n=3(1-2n) | | 176=-4-9l | | -3/8u=-18 | | -2(-4+b)=2=12-(2+2b) | | 4(12+8=x | | 5x+9=15x–81 | | -7x-7=20 | | 20=6(4x+1)+2(-5+3x) | | 70=10(y+3) | | (4x-3)^(2)=0 | | (4x-3)^(2)=25 | | 20=12+4n | | (1-2y/3-y)+y=(1/y+2) | | 1/3=a5/4 | | 8y=9y-11 | | 3(x+2)x=4 | | -17+3m=-1+6m-4m | | m-88=73 | | 15-4n=51 | | -17=3m=-1+6m-4m | | 999=-9-h | | -10k+12=-16-8k | | h^2=220 | | 2(2w+70=42 | | -3+14+y=12 | | 2x-3+3x+6=38 | | 33+19x=180 | | h^2=22 |